Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.156
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1336496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559689

RESUMO

Immune dysfunction is one of the central components in the development and progression of endometriosis by establishing a chronic inflammatory environment. Western-style high-fat diets (HFD) have been linked to greater systemic inflammation to cause metabolic and chronic inflammatory diseases, and are also considered an environmental risk factor for gynecologic diseases. Here, we aimed to examine how HFD cause an inflammatory environment in endometriosis and discern their contribution to endometriotic-associated hyperalgesia. Our results showed that HFD-induced obesity enhanced abdominal hyperalgesia that was induced by endometriotic lesions. Peritoneal inflammatory macrophages and cytokine levels increased by lesion induction were elevated by chronic exposure to HFD. Increased expression of pain-related mediators in the dorsal root ganglia was observed after lesion induction under the HFD condition. Although HFD did not affect inflammatory macrophages in the peritoneal cavity without lesion induction, the diversity and composition of the gut microbiota were clearly altered by HFD as a sign of low-grade systemic inflammation. Thus, HFD alone might not establish a local inflammatory environment in the pelvic cavity, but it can contribute to further enhancing chronic inflammation, leading to the exacerbation of endometriosis-associated abdominal hyperalgesia following the establishment and progression of the disease.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/complicações , Endometriose/metabolismo , Hiperalgesia/etiologia , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Abdome
2.
Eur J Obstet Gynecol Reprod Biol ; 296: 185-193, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458034

RESUMO

OBJECTIVE: The aim of this study was to investigate the expression and clinical significance of HIF-1α and DcR3 in endometriosis by analysing clinical case data. Tissue samples were collected for tissue chip analysis and staining, and human endometrial stromal cells were isolated and cultured for cell experiments. Additionally, experiments were conducted on collected peritoneal fluid to explore the association and role of HIF-1α and DcR3 in endometriosis. STUDY DESIGN: Patients who visited the Department of Obstetrics and Gynaecology at Central Hospital in Fengxian District, Shanghai, from January 2018 to December 2021 were recruited for this controlled study. Clinical data and tissue chip staining results were collected for multiple regression analysis on the clinical significance of HIF-1α and DcR3. Endometrial tissue, ovarian cysts, and pelvic fluid were collected, and human endometrial stromal cells were cultured. The impact of HIF-1α on DcR3 in different oxygen environments and its role in endometriosis were investigated through PCR, Western blotting, enzyme-linked immunosorbent assay, as well as adhesion and migration assays. RESULTS: In patients with endometriosis, the expression of DcR3 and HIF-1α was found to be upregulated and correlated in ectopic endometrium. The expression of DcR3 served as an indicator of the severity of endometriosis. Hypoxia induced the expression of DcR3, which was regulated by HIF-1α and promoted migration and adhesion. CONCLUSION: DcR3 can be used as a clinical indicator to assess the severity of endometriosis. The hypoxic environment in endometriosis enhances disease progression by regulating DcR3 through HIF-1α.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/metabolismo , China , Endométrio/metabolismo , Hipóxia/metabolismo , Células Estromais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
3.
J Endocrinol ; 261(2)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513352

RESUMO

The impaired endometrial receptivity is a major factor contributing to infertility in patients with endometriosis (EM), but the underlying mechanism remains unclear. Our study aimed to investigate the role of Kruppel-like factor 15 (KLF15) in endometrial receptivity and its regulation in EM. We observed a significant decrease in KLF15 expression in the mid-secretory epithelial endometrial cells of EM patients compared to normal females without EM. To confirm the role of KLF15 in endometrial receptivity, we found a significantly reduced KLF15 expression and a significant decrease in embryo implantation number in the rat model via uterine horn infection with siRNA. This highlights the importance of KLF15 as a regulator receptivity. Furthermore, through ChIP-qPCR, we discovered that the progesterone receptor (PR) directly binds to KLF15 promoter regions, indicating that progesterone resistance may mediate the decrease in KLF15 expression in EM patients. Additionally, we found that the mid-secretory endometrium of EM patients exhibited impaired epithelial-mesenchymal transition (EMT). Knockdown of KLF15 upregulated E-cadherin and downregulated vimentin expression, leading to inhibited invasiveness and migration of Ishikawa cells. Overexpression KLF15 promotes EMT, invasiveness, and migration ability, and increases the attachment rate of JAR cells to Ishikawa cells. Through RNA-seq analysis, we identified TWIST2 as a downstream gene of KLF15. We confirmed that KLF15 directly binds to the promoter region of TWIST2 via ChIP-qPCR, promoting epithelial cell EMT during the establishment of endometrial receptivity. Our study reveals the involvement of KLF15 in the regulation of endometrial receptivity and its downstream effects on EMT. These findings provide valuable insights into potential therapeutic approaches for treating non-receptive endometrium in patients with EM.


Assuntos
Endometriose , Feminino , Humanos , Ratos , Animais , Endometriose/metabolismo , Endométrio/metabolismo , Implantação do Embrião/fisiologia , Caderinas/genética , Caderinas/metabolismo , Caderinas/farmacologia , Transição Epitelial-Mesenquimal/genética , Células Epiteliais , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/farmacologia
4.
J Immunol ; 212(9): 1428-1441, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466035

RESUMO

Endometriosis is a chronic inflammatory disease in which endometrial-like tissue grows ectopically, resulting in pelvic pain and infertility. IL-23 is a key contributor in the development and differentiation of TH17 cells, driving TH17 cells toward a pathogenic profile. In a variety of inflammatory and autoimmune disorders, TH17 cells secrete proinflammatory cytokines, including IL-17, contributing to disease pathophysiology. Our studies and others have implicated IL-17 and TH17 cell dysregulation in endometriosis, which is associated with disease severity. In this article, we address whether IL-23-driven TH17 cells contribute to cardinal features of lesion proliferation, vascularization, and inflammation in endometriosis using patient samples, representative cell lines, and our established mouse model of endometriosis. The results indicated dysregulated expression of key genes in the IL-23/TH17 axis in patient ectopic and eutopic endometrial samples and increased IL-23 protein in patient plasma compared with controls. In vitro studies using primary human TH cells determined that rIL-23 mixture treatment increased pathogenic TH17 cell frequency. Similarly, rIL-23 treatment of cell lines (12Z cells, EECCs, HUVECs, and hESCs) representative of the endometriotic lesion microenvironment increased cytokines and growth factors, which play a role in lesion establishment and maintenance. In a syngeneic mouse model of endometriosis, rIL-23 treatment altered numbers of myeloid and T cell subsets in peritoneal fluid and increased giant cells within the lesion. Lesions from rIL-23-treated mice did not reveal significant alterations in proliferation/vascularization, although trends of increased proliferation and vascularization were observed. Collectively, these findings provide insights into the impact of the IL-23/TH17 axis on local immune dysfunction and broadly on endometriosis pathophysiology.


Assuntos
Endometriose , Interleucina-17 , Feminino , Humanos , Camundongos , Animais , Interleucina-17/metabolismo , Células Th17/metabolismo , Endometriose/metabolismo , Endometriose/patologia , Citocinas/metabolismo , Endométrio/metabolismo , Endométrio/patologia , Interleucina-23/metabolismo
5.
Nat Commun ; 15(1): 1947, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431630

RESUMO

Cellular responses to the steroid hormones, estrogen (E2), and progesterone (P4) are governed by their cognate receptor's transcriptional output. However, the feed-forward mechanisms that shape cell-type-specific transcriptional fulcrums for steroid receptors are unidentified. Herein, we found that a common feed-forward mechanism between GREB1 and steroid receptors regulates the differential effect of GREB1 on steroid hormones in a physiological or pathological context. In physiological (receptive) endometrium, GREB1 controls P4-responses in uterine stroma, affecting endometrial receptivity and decidualization, while not affecting E2-mediated epithelial proliferation. Of mechanism, progesterone-induced GREB1 physically interacts with the progesterone receptor, acting as a cofactor in a positive feedback mechanism to regulate P4-responsive genes. Conversely, in endometrial pathology (endometriosis), E2-induced GREB1 modulates E2-dependent gene expression to promote the growth of endometriotic lesions in mice. This differential action of GREB1 exerted by a common feed-forward mechanism with steroid receptors advances our understanding of mechanisms that underlie cell- and tissue-specific steroid hormone actions.


Assuntos
Endometriose , Proteínas de Neoplasias , Receptores de Esteroides , Animais , Feminino , Humanos , Camundongos , Endometriose/genética , Endometriose/metabolismo , Endométrio/metabolismo , Estrogênios/metabolismo , Proteínas de Neoplasias/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Esteroides/metabolismo
6.
Molecules ; 29(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398530

RESUMO

Endometriosis is a common gynecological condition with a complex physio-pathological background. This study aimed to assess the role of Rubus idaeus leaf extract (RiDE) as a potential therapeutic agent in reducing the size of the endometriotic lesions and modulate the plasma expression of MMP-2, MMP-9, and TGF-ß1. The endometriotic lesions were induced in a rat model by the autologous transplant of endometrium. Thirty-six female rats, Wistar breed, with induced endometriosis, were divided into four groups and underwent treatment for 28 days. The CTRL group received 0.5 mL/day of the vehicle; the DG group received 1 mg/kg b.w./day dienogest; the RiDG group received 0.25 mL/kg b.w./day RiDE and the D+RiDG group received 1 mg/kg b.w./day dienogest and 0.25 mL/kg b.w./day RiDE, respectively. Rats' weight, endometriotic lesion diameter and grade, and plasma levels of MMP-2, MMP-9, and TGF-ß1 were assessed before and after treatment. The administration of RiDE in association with dienogest vs. dienogest determined a lower weight gain and a reduction in diameter of the endometriotic lesions. RiDE administration restored MMP2 and MMP9 plasma levels to initial conditions. Rubus idaeus extract may help in reducing dienogest-associated weight gain, lower the size of endometriotic lesions, and have anti-inflammatory effects through MMP2 and MMP9 reduction.


Assuntos
Endometriose , Rubus , Humanos , Ratos , Feminino , Animais , Endometriose/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Rubus/metabolismo , Fator de Crescimento Transformador beta1 , Polifenóis/uso terapêutico , Ratos Wistar , Melhoramento Vegetal , Aumento de Peso
7.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397067

RESUMO

Endometriosis is a common disease among women of reproductive age in which endometrial tissue grows in ectopic localizations, primarily within the pelvic cavity. These ectopic "lesions" grow as well as migrate and invade underlying tissues. Despite the prevalence of the disease, an understanding of factors that contribute to these cellular attributes remains poorly understood. Prefoldin-5 (PFDN5) has been associated with both aberrant cell proliferation and migration, but a potential role in endometriosis is unknown. As such, the purpose of this study was to examine PFDN5 expression in endometriotic tissue. PFDN5 mRNA and protein were examined in ectopic (lesion) and eutopic endometrial tissue from women with endometriosis and in eutopic endometrium from those without endometriosis using qRT-PCR and immunohistochemistry, respectively, while function of PFDN5 in vitro was evaluated using cell count and migration assays. PFDN5 mRNA and protein were expressed in eutopic and ectopic endometrial tissue, predominantly in the glandular epithelium, but not in endometrium from control subjects. Expression of both mRNA and protein was variable among endometriotic eutopic and ectopic endometrial tissue but showed an overall net increase. Knockdown of PFDN5 by siRNA transfection of endometriotic epithelial 12Z cells was associated with reduced cell proliferation/survival and migration. PFDN5 is expressed in eutopic and ectopic glandular epithelium and may play a role in proliferation and migration of these cells contributing to disease pathophysiology.


Assuntos
Endometriose , Chaperonas Moleculares , Proteínas Repressoras , Feminino , Humanos , Proliferação de Células , Endometriose/metabolismo , Endometriose/patologia , Endométrio/metabolismo , Epitélio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo
8.
Mol Biol Rep ; 51(1): 359, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400863

RESUMO

The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase crucial for cellular differentiation, proliferation, and autophagy. It shows a complex role in the endometrium, influencing both normal and pathogenic conditions. mTOR promotes the growth and maturation of endometrial cells, enhancing endometrial receptivity and decidualization. However, it also contributes to the development of endometriosis (EMs) and endometrial cancer (EC), thus emerging as a therapeutic target for these conditions. In this review, we summarize recent research progress on the mTOR signalling pathway in the endometrium. This provides insights into female endometrial structure and function and guides the prevention and treatment of related diseases.


Assuntos
Endometriose , Sirolimo , Animais , Feminino , Humanos , Sirolimo/uso terapêutico , Endométrio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Proteínas Serina-Treonina Quinases/metabolismo , Mamíferos/metabolismo , Endometriose/metabolismo
9.
Clin Transl Med ; 14(2): e1564, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38344897

RESUMO

Defective decidualization of endometrial stromal cells (ESCs) in endometriosis (EM) patients leads to inadequate endometrial receptivity and EM-associated infertility. Hypoxia is an inevitable pathological process of EM and participates in deficient decidualization of the eutopic secretory endometrium. Enhancer of zeste homology 2 (EZH2) is a methyltransferase which catalyses H3K27Me3, leading to decreased expression levels of target genes. Although EZH2 expression is low under normal decidualization, it is abundantly increased in the eutopic secretory endometrium of EM and is induced by hypoxia. Chromatin immunoprecipitation-PCR results revealed that decidua marker IGFBP1 is a direct target of EZH2, partially explaining the increased levels of histone methylation modification in defected decidualization of EM. To mechanism controlling this, we examined the effects of hypoxia on EZH2 and decidualization. EZH2 mRNA showed decreased m6 A modification and increased expression levels under hypoxia and decidualization combined treatment. Increased EZH2 expression was due to the increased expression of m6 A demethylase ALKBH5 and decreased expression of the m6 A reader protein YTHDF2. YTHDF2 directly bind to the m6 A modification site of EZH2 to promote EZH2 mRNA degradation in ESCs. Moreover, selective Ezh2 depletion in mouse ESCs increased endometrial receptivity and improved mouse fertility by up-regulating decidua marker IGFBP1 expression. This is the first report showing that YTHDF2 can act as a m6 A reader to promote decidualization by decreasing the stability of EZH2 mRNA and further increasing the expression of IGFBP1 in ESCs. Taken together, our findings highlight the critical role of EZH2/H3K27Me3 in decidualization and reveal a novel epigenetic mechanism by which hypoxia can suppress EM decidualization by decreasing the m6 A modification of EZH2 mRNA.


Assuntos
Endometriose , Infertilidade , Feminino , Humanos , Animais , Camundongos , Endometriose/genética , Endometriose/metabolismo , Histonas/genética , Histonas/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo , RNA Mensageiro/metabolismo , Metilação , Hipóxia/complicações , Hipóxia/genética
10.
Int J Biochem Cell Biol ; 169: 106553, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417568

RESUMO

Given the high concentration of iron in the micro-environment of ovarian endometriosis, it is plausible to hypothesize that ectopic endometrial cells may be more susceptible to undergoing ferroptosis. Manipulation of ferroptosis has been explored as a potential therapeutic strategy to treat related diseases. In this study, we examined the impact on ectopic endometrial stromal cells (EESCs) of iron overload and an inducer of ferroptosis. We found that the iron concentration in the ovarian endometriosis was much higher than control samples. Treatment of cultured EESCs with ferric ammonium citrate (FAC) increase the sensitivity to undergo ferroptosis. By analyzing the RNA-seq results, it was discovered that zeste 2 polycomb repressive complex 2 subunit (EZH2) was significantly downregulated in ferroptosis induced EESCs. Moreover, overexpression of EZH2 effectively prevented the induction of ferroptosis. In addition, the activity or expression of EZH2 is directly and specifically inhibited by the methyltransferase inhibitor GSK343, which raises the sensitivity of stromal cells to ferroptosis. Taken together, our findings revealed that EZH2 act as a suppressor in the induced cell ferroptosis through a PRC2-independent methyltransferase mechanism. Therefore, blocking EZH2 expression and inducing ferroptosis may be effective treatment approaches for ovarian endometriosis.


Assuntos
Endometriose , Ferroptose , Sobrecarga de Ferro , Neoplasias Ovarianas , Feminino , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Endometriose/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Neoplasias Ovarianas/metabolismo , Sobrecarga de Ferro/metabolismo , Células Estromais/metabolismo , Ferro/metabolismo , Microambiente Tumoral
11.
Biomed Pharmacother ; 173: 116284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394847

RESUMO

Until non-hormonal therapeutic targets for endometriosis are suggested, we focused on mitochondrial function and autophagy regulation in the disease. Transcrocetin is a carotenoid and retinoic acid with high antioxidant potency and antiproliferative effects in several diseases. In this study, we demonstrated the therapeutic mechanisms of transcrocetin in endometriosis using the End1/E6E7 and VK2/E6E7 cell lines. Transcrocetin suppressed the viability and proliferation of these cell lines and did not affect the proliferation of normal uterine stromal cells. p21 Waf1/Cip1 as a cell cycle regulator and target of p53, were increased by transcrocetin and caused the G1 arrest via inhibition of cyclin-dependent kinase activity, which might further cause cell death. Furthermore, we confirmed endoplasmic reticulum stress and calcium ion dysregulation in the cytosol and mitochondrial matrix, disrupting the mitochondrial membrane potential. Mitochondrial bioenergetics were suppressed by transcrocetin, and oxidative phosphorylation-related gene expression was downregulated. Moreover, the proliferation of End1/E6E7 and VK2/E6E7 cells was regulated by transcrocetin-induced oxidative stress. Finally, we verified the impairment of autophagic flux following pre-treatment with chloroquine. Therefore, transcrocetin may be a potent therapeutic alternative for endometriosis.


Assuntos
Endometriose , Vitamina A/análogos & derivados , Humanos , Feminino , Endometriose/metabolismo , Carotenoides/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Oxirredução , Autofagia , Apoptose
12.
Nat Commun ; 15(1): 1152, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346980

RESUMO

The common human SNP rs3820282 is associated with multiple phenotypes including gestational length and likelihood of endometriosis and cancer, presenting a paradigmatic pleiotropic variant. Deleterious pleiotropic mutations cause the co-occurrence of disorders either within individuals, or across population. When adverse and advantageous effects are combined, pleiotropy can maintain high population frequencies of deleterious alleles. To reveal the causal molecular mechanisms of this pleiotropic SNP, we introduced this substitution into the mouse genome by CRISPR/Cas 9. Previous work showed that rs3820282 introduces a high-affinity estrogen receptor alpha-binding site at the Wnt4 locus. Here, we show that this mutation upregulates Wnt4 transcription in endometrial stroma, following the preovulatory estrogen peak. Effects on uterine transcription include downregulation of epithelial proliferation and induction of progesterone-regulated pro-implantation genes. We propose that these changes increase uterine permissiveness to embryo invasion, whereas they decrease resistance to invasion by cancer and endometriotic foci in other estrogen-responsive tissues.


Assuntos
Endometriose , Neoplasias , Gravidez , Feminino , Humanos , Animais , Camundongos , Endometriose/genética , Endometriose/metabolismo , Alelos , Endométrio/metabolismo , Estrogênios/metabolismo , Neoplasias/genética , Proteína Wnt4/genética
13.
Metabolomics ; 20(2): 32, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424274

RESUMO

INTRODUCTION: The microbial community plays a crucial role in the pathological microenvironment. However, the structure of the microbial community within endometriotic lesions and its impact on the microenvironment is still limited. METHODS: All 55 tissue samples, including ovarian ectopic (OEMs) and normal (NE) endometrium, were subjected to 16S rRNA sequencing, metabolomic and proteomic analysis. RESULTS: We found the abundance of Tuzzerella is significantly lower in OEMs compared to NE tissue (p < 0.01). We selected samples from these two groups that exhibited the most pronounced difference in Tuzzerella abundance for further metabolomic and proteomic analysis. Our findings indicated that endometriotic lesions were associated with a decrease in L-Glutamine levels. However, proteomic analysis revealed a significant upregulation of proteins related to the complement pathway, including C3, C7, C1S, CLU, and A2M. Subsequent metabolic and protein correlation predictions demonstrated a negative regulation between L-Glutamine and C7. In vitro experiments further confirmed that high concentrations of Glutamine significantly inhibit C7 protein expression. Additionally, immune cell infiltration analysis, multiplex immunofluorescence, and multifactorial testing demonstrated a positive correlation between C7 expression and the infiltration of regulatory T cells (Tregs) in ectopic lesions, while L-Glutamine was found to negatively regulate the expression of chemotactic factors for Tregs. CONCLUSION: In this study, we found a clear multi-omics pathway alteration, "Tuzzerella (microbe)-L-Glutamine (metabolite)-C7 (protein)," which affects the infiltration of Tregs in endometriotic lesions. Our findings provide insights into endometriosis classification and personalized treatment strategies based on microbial structures.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/metabolismo , Glutamina , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Multiômica , Proteômica , RNA Ribossômico 16S/metabolismo , Metabolômica
14.
Commun Biol ; 7(1): 227, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402336

RESUMO

Endometriosis is linked to increased infertility and pregnancy complications due to defective endometrial decidualization. We hypothesized that identification of altered signaling pathways during decidualization could identify the underlying cause of infertility and pregnancy complications. Our study reveals that transforming growth factor ß (TGFß) pathways are impaired in the endometrium of individuals with endometriosis, leading to defective decidualization. Through detailed transcriptomic analyses, we discovered abnormalities in TGFß signaling pathways and key regulators, such as SMAD4, in the endometrium of affected individuals. We also observed compromised activity of bone morphogenetic proteins (BMP), a subset of the TGFß family, that control endometrial receptivity. Using 3-dimensional models of endometrial stromal and epithelial assembloids, we showed that exogenous BMP2 improved decidual marker expression in individuals with endometriosis. Our findings reveal dysfunction of BMP/SMAD signaling in the endometrium of individuals with endometriosis, explaining decidualization defects and subsequent pregnancy complications in these individuals.


Assuntos
Endometriose , Infertilidade , Complicações na Gravidez , Gravidez , Feminino , Humanos , Endometriose/genética , Endometriose/metabolismo , Decídua/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Infertilidade/metabolismo , Complicações na Gravidez/metabolismo
15.
BMC Womens Health ; 24(1): 148, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424540

RESUMO

INTRODUCTION: Endometriosis (EM) is a multifactorial disease that affects 10 - 15% of women of reproductive age. Additionally, 30-50% of women with EM suffer from infertility. The mechanism of infertility caused by EM has not yet been consistently explained. In recent years, studies have shown a link between infertility associated with EM and changes in the reproductive tract microbiota. METHODS: In this study, we involved 26 EM patients (8 cases of stage I-II and 18 cases of stage III-IV) and 31 control subjects who were tubal obstruction-related infertility (TORI). The samples from peritoneal fluid (PF) and uterine fluid (UF) were collected and sequenced by 16 S rRNA amplicon. RESULTS: In the comparison of microbial diversity, we found no significant differences in the microbial diversity of PF and UF between patients with stage I-II EM and those with TORI. However, there was a significant difference in microbial diversity among patients with stage III-IV EM compared to the previous two groups. Lactobacillus decreased in PF of EM compared to the control group, while it increased in UF. In PF, the abundance of Pseudomonas, Enterococcus, Dubosiella and Klebsiella was significantly higher in patients with stage III-IV compared to TORI patients. And in UF, the main differences existed between stage I-II EM compared to the other two groups. The abundance of pontibacter, aquabacterium, Rikenellaceae and so on at the genus level was significantly enriched in the EM patients with stage I-II. In the analysis based on KEGG database, EM may affect the receptivity related pathways of the endometrium by influencing changes in the uterine microbiota. CONCLUSION: Our results indicated that as EM progresses, the microorganisms in UF and PF keep changing. These changes in the microbiota, as well as the resulting alternations in gene functional classification, may play an important role in the infertility associated with EM.


Assuntos
Endometriose , Infertilidade Feminina , Doenças Uterinas , Humanos , Feminino , Endometriose/metabolismo , Infertilidade Feminina/etiologia , Líquido Ascítico/metabolismo , Endométrio/metabolismo
16.
Endocr J ; 71(2): 199-206, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38171884

RESUMO

Endometriosis, a common gynecological disorder characterized by the growth of endometrial gland and stroma outside the uterus, causes several symptoms such as dysmenorrhea, hypermenorrhea, and chronic abdominal pain. 17ß estradiol (E2) stimulates the growth of endometriotic lesions. Although estetrol (E4), produced by human fetal liver, is also a natural estrogen, it may have the opposite effects on endometriotic cells. We investigated different effects of E4 and E2 on the invasion and migration of immortalized human endometrial stromal cells (HESCs) and evaluated whether E4 affects the expression of Wiskott-Aldrich syndrome protein (WASP) family member 1 (WASF-1). We measured the invasion of HESCs by a Matrigel chamber assay. Cell migration was measured by wound healing assay and cell tracking analysis. The expression of WASF-1 was confirmed by independent real-time PCR analysis. Transfection of cells with siRNAs was carried out to knock down the expression of WASF-1 in HESCs. E4 significantly inhibited E2-induced invasion and migration of HESCs. WASF-1 was found to be a potential mediator based on metastasis PCR array. WASF-1 was upregulated by E2 and downregulated by E4. Knockdown of WASF-1 inhibited migration. Our results suggest that E4 may inhibit E2-induced growth of endometriotic lesions. Downregulation of WASF-1 is involved in the inhibitory effects of E4 on migration. The use of E4 combined with progestins as combined oral contraceptives may cause endometriotic lesions to regress in women with endometriosis.


Assuntos
Endometriose , Estetrol , Humanos , Feminino , Estetrol/metabolismo , Estetrol/farmacologia , Endometriose/metabolismo , Endometriose/patologia , Estrogênios/farmacologia , Estradiol/farmacologia , Estradiol/metabolismo , Movimento Celular , Endométrio/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia
17.
Reprod Biomed Online ; 48(3): 103610, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241767

RESUMO

RESEARCH QUESTION: Do different subtypes of superficial peritoneal endometriotic lesions exist, based on the presence and morphology of smooth muscle, collagen fibres and immune cell populations? DESIGN: A retrospective cohort study of 24 patients, from across the menstrual cycle, with surgically and histologically confirmed endometriosis. Immunofluorescence was used to delineate the CD10 stromal area of lesions (n = 271 lesions from 67 endometriotic biopsies), and then smooth muscle actin (SMA) positive tissue and immune cell populations (CD45+ and CD68+) were quantified within and adjacent to these lesions. Second harmonic generation microscopy was used to evaluate the presence and morphology of type-1 collagen fibres within and surrounding lesions. RESULTS: Overall, immune cell numbers and the area of SMA and collagen within endometriotic lesions tended to be low, but a spectrum of presentations significantly varied, particularly in the adjacent tissue microenvironment, based on lesion locations, the morphology of endometriotic gland profiles, or both. Lesions in which collagen fibres formed well aligned capsules around the CD10+ stromal border were identified compared with lesions in which collagen fibre distribution was random. Considerable inter- and intra-patient variability in the morphology of SMA and collagen was observed within and surrounding lesions. CONCLUSION: These data demonstrate considerable diversity in the presence of immune cells and morphology of SMA and collagen within, but even more so, surrounding endometriotic lesions, even within individual patients. This heterogeneity, especially within individual patients, presents a challenge to incorporating these cell and tissue types into any new endometriosis classification systems or prognostic approaches.


Assuntos
Endometriose , Doenças Peritoneais , Feminino , Humanos , Actinas/metabolismo , Endometriose/metabolismo , Estudos Retrospectivos , Doenças Peritoneais/patologia , Músculo Liso/patologia , Colágeno/metabolismo , Endométrio/metabolismo
18.
Pathol Res Pract ; 254: 155103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237401

RESUMO

Endometriosis is an estrogen-dependent chronic inflammatory disorder involving the placement and growth of endometrial tissue outside the uterine cavity. It is the most common multifactorial disease that affects the life quality of women in reproductive age. Due to its multicomponent nature, early diagnosis of the disease is challenging. Since many genetic, epigenetic alterations and non-genetic factors contribute to the pathology of endometriosis, devising a drug therapy that directly acts on the ectopic tissue is extremely difficult. Endometriosis is a hormone-driven disease with estrogen considered as a primary driver for the development of endometriotic lesions. This study aims to identify biosignatures involved in endometriosis with and without gonadotropin releasing hormone agonists (GnRHa). GnRHa is a short peptide analog of GnRH that causes inhibition of estrogen and androgen synthesis. Microarray based-gene expression profiling was performed on total RNA extracted from endometriotic tissue samples with and without GnRHa-treated patients already published in our previous paper. The untreated group were considered as the control. Genes were then selected for validation by quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR analysis confirmed significant downregulation in(p < 0.05) expression of DARC (p = 0.0042), CDH1 (p = 0.0027), CDH5 (p = 0.0283), ATP2A3 (p < 0.001), RGS5 (p = 0.0032), and CD36 (p = 0.0162) in endometriosis patients treated with GnRHa analogs. Although, CTNNAL1 (p = 0.0136) also showed significant results but there was upregulation in their expression levels after GnRHa treatment. Thus, an altered expression of these genes makes them a possible candidate determinant of endometriosis treated with GnRHa.


Assuntos
Endometriose , Humanos , Feminino , Endometriose/genética , Endometriose/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/uso terapêutico , Útero/patologia , Perfilação da Expressão Gênica , Estrogênios
19.
Endocrinology ; 165(4)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38227801

RESUMO

Endometriosis is a common and debilitating disease, affecting ∼170 million women worldwide. Affected patients have limited therapeutic options such as hormonal suppression or surgical excision of the lesions, though therapies are often not completely curative. Targeting receptor tyrosine kinases (RTKs) could provide a nonhormonal treatment option for endometriosis. We determined that 2 RTKs, macrophage-colony stimulating factor 1 receptor (CSF1R) and mast/stem cell growth factor receptor KIT (KIT), are overexpressed in endometriotic lesions and could be novel nonhormonal therapeutic targets for endometriosis. The kinase activity of CSF1R and KIT is suppressed by pexidartinib, a small molecule inhibitor that was recently approved by the US Food and Drug Administration. Using immunohistochemistry, we detected CSF1R and KIT in endometriotic tissues obtained from peritoneal lesions, colorectal lesions, and endometriomas. Specifically, we show that KIT is localized to the epithelium of the lesions, while CSF1R is expressed in the stroma and macrophages of the endometriotic lesions. Given the high epithelial expression of CSF1R and KIT, 12Z endometriotic epithelial cells were used to evaluate the efficacy of dual CSF1R and KIT inhibition with pexidartinib. We found that pexidartinib suppressed activation in 12Z cells of JNK, STAT3, and AKT signaling pathways, which control key proinflammatory and survival networks within the cell. Using quantitative real-time polymerase chain reaction, we determined that pexidartinib suppressed interleukin 8 (IL8) and cyclin D1 (CCND1) expression. Lastly, we demonstrated that pexidartinib decreased cell growth and viability. Overall, these results indicate that pexidartinib-mediated CSF1R and KIT inhibition reduces proinflammatory signaling and cell viability in endometriosis.


Assuntos
Aminopiridinas , Endometriose , Pirróis , Humanos , Feminino , Endometriose/metabolismo , Sobrevivência Celular , Transdução de Sinais , Receptores Proteína Tirosina Quinases/metabolismo
20.
Cell Commun Signal ; 22(1): 82, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291428

RESUMO

BACKGROUND: As a dual-function metabolite, succinate has emerged in cell function and plays a key signaling role in linking mitochondrial function to other cellular functions. Succinate accumulation in the cytoplasm is commonly associated with hypoxia in the microenvironment and immune cell activation. Extracellular succinate released into the microenvironment is considered an inflammatory alarm that can be sensed by its membrane receptor SUCNR1, which boosts proinflammatory responses and acts akin to classical hormones and cytokines. Succinate plays an important role in the development of inflammatory diseases. Whether succinate facilitates the progression of endometriosis (EMs), characterized by chronic inflammation and peritoneal adhesion, is worth exploring. OBJECTIVE: We mimicked the ectopic milieu in vitro and in vivo to evaluate the main source and potential role of succinate in endometriosis. We assessed the molecular and functional effects of succinate on macrophages and peritoneal mesothelial cells in peritoneal cavity. The effect of succinate/SUCNR1 signaling on ectopic endometrial stromal cells (ESCs) was further explored in this study. METHODS: In this study, we used targeted organic acid metabolomics analysis and in vitro assays to assess the potential accumulation of succinate in the peritoneal fluid of EMs patients. We examined its correlation with disease severity, Visual Analogue Scale, and the Endometriosis Fertility Index. Flow cytometry, enzyme linked immunosorbent assay, western blot assay, quantitative real-time PCR, and other molecular biology techniques were used to explore the potential mechanisms. RESULTS: By mimicking the ectopic milieu, we constructed an in vitro co-culture system and found that M1 polarized macrophages and that the peritoneal mesothelial cell line (HMrSV5) mainly released succinate into their microenvironment and activated the succinate receptor (SUCNR1) signal, which further polarized the macrophages and significantly enhanced the invasive survival of ESCs, and the adhesion to the peritoneum. We further investigated the pathological effects of extracellular succinate in vivo using a xenograft mouse models of endometriosis. CONCLUSIONS: Succinate-SUCNR1 signaling facilitates the creation of inflammatory cells and plays a vital role in EMs progression and peritoneal adhesion. Our work on the molecular mechanisms underlying succinate accumulation and function will help elucidate the phenotypic mysteries of pain and infertility in EMs. Video Abstract.


Assuntos
Endometriose , Ácido Succínico , Feminino , Humanos , Animais , Camundongos , Ácido Succínico/metabolismo , Endometriose/metabolismo , Técnicas de Cocultura , Succinatos , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...